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The evolution of a turbulent spot in an accelerating laminar boundary-layer flow was 
investigated. The type of boundary layer chosen for this experiment resembles in 
every respect the flow in the vicinity of a stagnation point theoretically described by 
Falkner and Skan. The rate of growth of the spot was significantly inhibited by the 
favourable pressure gradient in all three directions. It became much shorter and 
narrower in comparison with a similar spot generated in a Blasius boundary layer at 
comparable distances from its origin and comparable Reynolds numbers. The 
celerities of its boundaries did not scale with the local free-stream velocity as they do 
in the absence of a pressure gradient. Dimensional analysis was used to identify and 
correlate the independent variables determining the size, the convection speed, and 
the relative rate of growth of this spot. 

The familiar arrowhead shape of the spot gave way to a rounded triangular shape 
with the trailing interface being straight and perpendicular to the direction of 
streaming. The familiar Tollmien-Schlichting wave packet was not observed in this 
pressure gradient because the surrounding boundary layer was very stable a t  the Re 
considered. Since the arrowhead shape of the spot is associated with the breakdown 
of the waves within the packet it cannot occur below the critical Re. The relative size 
of the ‘calmed region’ following the spot also diminished; however, one could only 
speculate as to the origin of this region. 

1. Introduction 
The transition process from laminar to turbulent flow has been investigated during 

the past fifty years, but the thrust of these investigations was directed towards the 
laminar boundary layer evolving on a flat plate in the absence of a pressure gradient. 
Possible ways to delay transition and thus reduce the skin-friction drag provide the 
practical justification for this type of research, and the simplest configuration in 
which such a study can be implemented is a flat plate. 

Turbulent spots represent the end product of most paths to transition (Morkovin 
1969). They often appear spontaneously, seemingly bypassing the gradual ampli- 
fication of disturbances resulting from a variety of instability mechanisms of the 
laminar boundary layer. It was observed (Elder 1962) that a sufficiently strong 
disturbance may trigger a spot instantly a t  subcritical Reynolds numbers a t  which 
all small-amplitude disturbances clearly decay. Consequently spots are often 
observed downstream of protuberances which generate vorticity and therefore 
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destabilize the flow locally. They are pr6duced in the laboratory by pulsed, large- 
amplitude disturbances introduced into the boundary layer by mechanical, 
acoustical or electrical means (e.g. Schubauer & Klebanoff 1956; Elder 1962; 
Wygnanski, Sokolov & Friedmann 1976; Cantwell, Coles & Dimotakis 1978; Gad-el- 
Hak, Blackwelder & Riley 1981). Quite different types of turbulent spots were 
observed in a flow of a thin film of water on an inclined surface (Emmons 1951) and 
in a plane Poiseuille flow (Carlson, Widnall & Peeters 1982), suggesting that the 
general characteristics of the spots depend on the type of flow in which they are 
generated. 

Wygnanski, Haritonidis & Kaplan (1979), while exploring the possible mechanisms 
responsible for the proliferation and growth of turbulent spots in a laminar boundary 
layer, observed a pair of wave packets trailing the turbulent spot. These packets were 
identified with Tollmien-Schlichting (T-S) waves which broke down a t  high 
Reynolds numbers and generated new turbulent spots, setting a chain reaction by 
which turbulence contaminated the rest of the laminar flow. The intricate interplay 
between the single spot and its trailing wave packets was partially resolved by 
Glezer, Katz & Wygnanski (1989), who observed that the waves can break down, 
accelerate, and rejoin the turbulent spot provided that the critical Reynolds number 
(i.e. the Re below which all T S  waves decay) of the laminar flow was exceeded. 
Below the critical Reynolds number, the waves are merely passive attendants to the 
spot (see Chambers & Thomas 1983) because they decay as they lag behind the 
unstable region (the ‘moving generator’ in the parlance of Glezer et al.) which 
accompanies the tip of the spot. 

The significance of a pressure gradient in determining the critical Reynolds 
number is well known (Wazzan, Okamura & Smith 1968) but its effect on the size, 
shape and internal structure of the turbulent spot is not. An experiment was 
prepared a t  Tel-Aviv University with the cooperation of Dr Amini (see Wygnanski 
1981) to investigate the turbulent structure of the spot in a favourable pressure 
gradient. It was believed that the accelerating boundary layer would slow the 
evolution of the spot and facilitate the mapping of its internal structures, hoping that 
some salient characteristics of these structures also exist in the absence of pressure 
gradient but in a more obscure fashion. A favourable pressure gradient was set up in 
the wind tunnel by placing a 3.6 m long flat plate a t  an angle of incidence of about 
4’ to the flow. The boundary layer generated at that time did not follow the self- 
similarity requirements imposed by the Falkner-Skan solution, even though the 
shape of the velocity profile resembled the theoretical Falkner-Skan profile for /3 = 
0.12. Preliminary observations of the spot evolving in this boundary layer suggested 
that it grew at approximately one half the rate observed in a Blasius boundary layer 
at  a comparable Reynolds number. Furthermore, the propagation velocity of the 
turbulent interfaces did not scale with the local free-stream velocity of the flow. 
Narasimha & Subramanian (1984) observed that the lateral growth of the spot 
decreased as a result of a favourable pressure gradient, which they imposed on their 
flow by inserting liners into the test section of their wind tunnel, Although the 
favourable pressure gradient used in that experiment did not generate a self-similar 
boundary layer the observed lateral spreading rates of the spot were consistent with 
the observations of Wygnanski (1981). Turbulent spots in plane Poiseuille flow were 
observed by Carlson et al. (1982) and were analysed in detail by Henningson (1988). 
These spots however, are quite different from the spots evolving in a boundary layer 
and consequently a direct comparison is all but impossible. The purpose of the 
present investigation was to establish the general relationships between the pressure 
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FIGURE 1 .  Oescription of the experimental apparatus. 

gradient and Reynolds number on one hand, and the parameters characterizing the 
spot on the other. Some of these relationships will be discussed in the present 
manuscript. 

The facility used in the present experiment was described by Wygnanski et a2. 
(1976) and some of the novel data-reduction procedures were defined by Glezer et al. 
(1989) A polished aluminium plate was mounted vertically in the test section (figure 
1) .  The plate could pivot around its leading edge, which was located 28 cm 
downstream of the inlet and 11 cm from the rear sidewall of the test section. The 
trailing edge of the plate was suspended from a curved track having a radius of 
curvature that is equivalent to the entire length of the plate. The angle of attack of 
the plate could therefore be easily changed within the constrained space limited by 
the sidewalls of the test section. An adjustable, trailing-edge flap was added in order 
to ensure that the location of the leading stagnation line occurs on the working 
surface but it was not used in the present experiment. Three sets of screw jacks 
mounted to the backward surface of the plate secured the plate to the sidewalls after 
the angle of attack of the plate was determined. Screens were added to the divergent 
channel between the backward surface of the plate and the rear sidewall of the test 
section in order to prevent flow separation from either surface and provide a pressure 
drop in that channel. The top and bottom walls of the test section are also adjustable 
and were used to regulate the pressure gradient until the measured thickness of the 
boundary layer did not vary in the direction of streaming. The gap between the plate 
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and the top and bottom walls of the tunnel had to be sealed after each adjustment 
in order to eliminate cross-flow between the two channels created in the test section 
by the presence of the plate. The time required to attain the desired pressure gradient 
was not prohibitive, in spite of the fact that the adjustment procedure was partially 
based on trial and error. The plate was inclined to the sidewalls of the test section a t  
4.5O. 

2. Discussion of results 
2.1. The baseJEow 

The evolution of small disturbances in a laminar boundary layer depends on the 
detailed shape of the velocity profile, the thickness of the layer and the free-stream 
velocity. By invoking the parallel flow approximation the Orr-Sommerfeld equation 
is derived in which the mean velocity U is normalized by the local free-stream 
velocity U,, the derivatives with respect to the distance from the surface are 
normalized by the displacement thickness of the boundary layer 6*, and all times are 
scaled by 6*/U,. The Reynolds number appears as a parameter in the equation. The 
validity of the solution was tested experimentally in the Blasius boundary layer 
(Schubauer & Skramstad 1947; Ross et al. 1970; Kachanov et al. 1975) and a 
correction had to be introduced to account for the divergence of the flow (Saric & 
Nayfeh 1975). A good generic flow against which the linear stability model could be 
tested is represented by the Falkner-Skan solution for the stagnation region (i.e. the 
Falkner-Skan parameter p = 1). However, this type of flow was never set up 
experimentally over a sufficiently long distance in the direction of streaming to 
provide the needed base flow for such a comparison. Furthermore, the required 
Reynolds numbers for such an experiment are an order of magnitude higher than for 
the Blasius boundary layer since the critical Re,, increases from 520 a t  p = 0 to 13000 
at p = 1. Nevertheless, if one is interested in exploring the reaction of the laminar 
boundary layer to strong disturbances, the steady-state solution for p= 1 is 
advantageous by being very stable to small-amplitude disturbances and by being 
parallel to the solid surface. The evolution of a turbulent spot in such a flow will not 
be clouded by the slow divergence of the base flow and by the possible secondary 
breakdown of TollmienSchlichting waves. The generation of such a flow will be 
discussed in this section. 

The favourable pressure gradient was set up by inclining the plate with respect to 
the sidewalls of the wind tunnel, adjusting the divergence of the top and bottom 
walls, and adding screens behind the plate until the displacement thickness of the 
boundary layer 6" did not vary with X .  The ensuing normalized velocity profile 

- U = F / ( Y  

v, 
turned out to be independent of X and was therefore self-similar (figure 2). 

The dependence of U, on X can be easily derived by assuming the existence of a 

where U, is a constant reference velocity defined a t  an arbitrary location outside the 
boundary layer; 6 = (X--X,)/S* is a dimensionless distance in the direction of 
streaming and X, is the distance of the virtual origin from the leading edge of the 
plate; 7 = kY/6* is the similarity variable representing a dimensionless distance 
normal to the surface, and k is a constant. 

self-similar stream function: @ = q 6 * [ G ( ( ) F ( q ) ] ,  (2 .2 )  
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Substituting into the boundary-layer equations and requiring S* to be 
independent of X, results in the familiar Falkner-Skan equation describing the flow 
near a stagnation point provided : 

k - dG kv 
d[ q S *  Re,, 
_-  ---- 

and 

where F’(0) = 0 ad F’(o0) = 1. Consequently, the free-stream velocity gradient 
outside the boundary layer is 

2 

or the dimensionless group 
(Ta) P 2 d y  = k. 

The constant k, therefore, can be established experimentally from two independent 
quantities, first from the shape of the normalized, self-similar velocity profile and 
second from the constancy of the product [(S*2/v)(dU,/dX)] which also implies that 
the free-stream velocity varies linearly with X, i.e. 
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where X, represents the location of the virtual origin of the flow. 

edge as the characteristic location X,,, to obtain 
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One may normalize the data by choosing a location say, 100 cm from the leading 

- U , =  x-x, 
v,,, xloo-xo' 

thus permitting the collapse of the data onto a single straight line as shown in figure 

The linear variation of V, along the plate was established experimentally for three 
freo-stream velocities monitored at Xlo0 (figure 3). This location was chosen because 
it corresponds to the centre of the region in which the mapping of the turbulent spot 
was planned. The straight lines fitting the raw data are listed below : 

U,,, = 9.0m/s, U, = 1.70(X+4.24) m/s, S* = 1.6 mm, k = 0.544, 

U,,, = 7.5 m/s, V, = 1.47(X+4.08) m/s, 6" = 1.7 mm, k = 0.538, 

U,,, = 6.0 m/s, U, = 1.20(X+4.00) m/s, 6" = 1.9 mm, k = 0.543, 

3(b) .  

where X is measured in m, and k is determined from (2.4) using v = 14.7 mmz/s. 
Thus, the virtual origin of the flow is located between -4.24 < X, < -4.00 m (ie.  

upstream of the leading edge of the plate). Variations in the reference velocity 
affected the rate of change of the free-stream velocity with X (i.e. dV,/dX) and to a 
lesser extent affected the location of the virtual origin. Nevertheless, the value of k 
remained unchanged, proving the validity of (2.4). 

The theoretical value of k derived from (2.3) for p = 1 should have been 0.6479 
rather than the experimentally deduced value of 0.54. The discrepancy between the 
two estimates of k is attributed to the lack of similarity near the leading edge of the 
plate where the stagnation streamline is forced to attach to the working surface. In 
this region the displacement thickness increases gradually before attaining its 
equilibrium value, while the free-stream velocity accelerates. These effects are 
manifested by the location of the virtual origin which is far upstream of the leading 
edge. The magnitude of S* reflects the upstream history of the flow and therefore 
affects directly the value of k calculated from (2.4). The magnitude of k derived from 
(2.3) is independent of the magnitude of 6" by virtue of the definition of $. 

Since the normalized shape of the velocity profile was self-similar at all reference 
velocities (figure 2) one may consider the inverse problem and attempt to determine 
the value of /3 corresponding to k = 0.54, which turned out to be 1.6. Solving the 
Falkner-Skan equations for p = 1 and p = 1.6 yields two normalized velocity profiles 
which are experimentally indistinguishable (see the insert in figure 2). However, the 
evolution of the boundary layer in the direction of streaming would have been very 
different. For example, the free-stream velocity corresponding to /3 = 1.6 would have 
had to vary as the fourth power of X, while the boundary-layer thickness would have 
been proportional to X-1.5, and this is certainly not the case in the present 
experiment. It is well known that the normalized shape of the Falkner-Skan family 
of velocity profiles is not sensitive to p for p > 1, and fortunately small changes in 
/3 around p =  1 do not affect the sensitivity of the calculated profiles to small 
perturbations (Wazzan et al. 1968). This is contrary to observations made in the 
absence of a pressure gradient (i.e. for p = 0) ,  where the critical Reynolds number is 
very sensitive to small differences in /3 which can be generated by imperceptibly small 
pressure gradients (Glezer et al. 1989). Consequently, the agreement between laminar 
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boundary-layer theory and experiment is considered to be sufficiently good to 
assume that the turbulent spots observed in this experiment evolve as if they have 
occurred in a stagnation-point flow (figure 2). 

The particular flow investigated experimentally is but one in a class of self-similar 
wedge flows which are characterized by a pressure gradient parameter such that 

u, [X-X0]PI(2-P), s* [X-&](l-P?I(2-P), (2.7 1 
which degenerate to (2.5) when p = 1. It is customary, in linear stability theory, to 
replace X with 6* as being an independent lengthscale governing the flow; the same 
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procedure will be followed in the present investigation. The most convenient 
reference velocity in this experiment corresponds to the free-stream velocity above 
the electrodes between which the turbulent spots are generated. This location in the 
past as the origin of the coordinate system used in studying turbulent spots. It will 
be used here for the sake of consistency, but any other choice of reference location 
for determining the free-stream velocity is equally valid. 

2.2. The effect of a pressure gradient on the size and shape of the spot 
The general shape of the spot, its rate of growth, and the celerity of its boundaries 
are reasonably well documented in the absence of a pressure gradient, but very little 
is known about the effect of pressure gradient on these spot characteristics. One can 
only surmise, from the pace at  which the laminar boundary layer is contaminated by 
turbulence, that the rate of growth of the spot will be inhibited by a favourable 
pressure gradient and will be enhanced by an adverse pressure gradient. 

The arrival time of the spot at a particular location and its duration at that 
location were determined by intermittency , which corresponds to an ensemble- 
averaged ‘on-off’ (‘telegraph’) signal defined by Glezer et al. (1989). Thus, for a 
probe situated at  a given coordinate, two time instants are recorded, the first 
marking the arrival of the leading interface of the spot t,, and the second marking 
the arrival of the trailing interface of the spot tTE. For example, the data plotted in 
figure 4 represent measurements taken at various X-locations on the plane of 
symmetry of the spot (i.e. at Z = 0) at constant Y/6* and U,,, = 7.5 m/s. The average 
duration of the spot at  a given location can be calculated directly by setting: 

At = t,, - t L E ,  (2.8) 

while the average length of the spot at  a given (Y,Z)-coordinate and time t can be 
obtained by interpolation or by a polynomial fit to the data 

(Lx)Y,.z,t = XLE-XTE. (2.9) 
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FIGURE 5 .  The length of the spot as a function of the distance from its origin. 

L, may be expressed in a dimensionless form by dividing throughout by the distance 
of the spark (i.e. the location at which the spot was initiated) from virtual origin of 
the flow (X, - z,) : 

L x  - X L E - X T E  - (2.10) 
X,-X, x,-x, . 

The time used for reference represents the interval between the initiation of the 
spot and the arrival of its most forward-reaching tip on the plane of symmetry (i.e. 
the 'overhang ') to  a prescribed X-location. This time is arbitrarily, though uniquely, 
defined as an independent variable. Experimental results on the plane of symmetry 
a t  Y x S* indicate that the spot becomes longer with increasing X but the rate of its 
elongation is not constant, as is the case in the absence of the pressure gradient 
(figure 5) .  Furthermore, the local length of the spot depends on the free-stream 
velocity, in spite of the fact that the pressure gradient parameter p is constant. 
An approximate rate of elongation of the spot in this experiment is described by 
&,/a x 0.35, which is roughly equivalent to one-half of the rate observed in the 
absence of pressure gradient at comparable Reynolds numbers. 

Furthermore, the celerities of the leading and the trailing interface may be 
determined from the slope of the curves shown in figure 4. These celerities can be 
expressed as functions of time or as functions of the location of the overhang. The 
shape and size of the spot a t  various stages of its development can be determined 
from such data by repeating the procedure mentioned above throughout the entire 
flow field. 

The duration of the spot on the plane of symmetry a t  a given U, increases almost 
linearly with X, regardless of the elevation above the surface at which it was 
measured (the data shown in figure 6 provide information between Y/6* = 0.5 and 
Y/6* = 8.5). The longest duration of the spot a t  a given distance from the generator 
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occurs at Y/S* = 3.5, which concomitantly coincides with the edge of the laminar 
boundary layer and with the location of the 'overhang' from the surface. The 
temporal evolutions of the spots for the three reference velocities considered a t  all 
elevations from the surface are cross-plotted in figure 7. These results depict the 
growth of the spot with t and X showing its general shape on the plane of 
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symmetry. The laminar velocity profile for each of the three reference velocities 
considered is plotted on the left-hand side of the figure, and the respective 
thicknesses of the boundary layers are marked for comparison. 

The squares of the celerities calculated for the case cited in figure 4 are plotted in 
figure 8 (a )  together with the local free-stream velocity measured at six streamwise 
locations. The celerity of the trailing interface increases slightly with X ,  while the 
celerity of the leading interface increases with X a t  a rate that is initially much higher 
than (dU,/dX). Nevertheless, (ULE/Q) is always smaller than unity. The reason for 
plotting the squares of these celerities in figure 8 ( a )  is to demonstrate that both 
interfaces propagate downstream at a speed that is approximately proportional to Xf 
while the free-stream velocity increases linearly with X (figure 3). The procedure 
was repeated a t  two additional reference velocities prescribed by U,,, = 6 and 9 m/s. 

FIGURE 8. The variation of (a)  q, V,, and UZ,, with X ,  and ( b )  U.,/V, and UT,/U, with X .  
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The ratio of GE/q plotted in figure 8 ( b )  was almost constant at the lowest reference 
velocity measured (i.e. at V,,, = 6 m/s), while a t  V,,, = 7.5 and 9 m/s it actually 
decreases with increasing distance from the leading edge of the plate. The normalized 
celerities of the leading interface also vary with X and are affected by the choice of 
Q (or U,,,). Replotting these celerities as functions ofRex = (U ,X) / v  or Re, = (U, S ) / v  
did not eliminate their dependence on x or on U,. It is clear, therefore, that neither 
U,, nor UTE scale only with the free-stream velocity outside the boundary layer as 
they do in the absence of a pressure gradient. 

The size and shape of the spot, after its overhang on the plane of symmetry has 
travelled a distance (X-X,), can be determined from plots similar to those drawn in 
figure 5,  but in order not to be inundated by data, in view of the large number of 
independent parameters governing this flow, the results will be presented in a 
dimensionless form. 

2.3. The overall dimensions of the spot 

The state of a boundary layer a t  some prescribed location can be described by: Q, 
a reference free-stream velocity ; SF, a characteristic thickness of the laminar 
boundary layer ; H ,  a shape factor defining the laminar velocity profile, provided that 
the fluid is known and the flow is steady, two-dimensional, incompressible and there 
is no transpiration or heating through the surface. Only U,, however, can be 
considered as an independent variable while S,* and H,  depend on dP/dX, the 
pressure gradient which determines the acceleration or deceleration of the free- 
stream, as well as on X-X,, which defines the streamwise distance from a prescribed 
reference location. 

For the self-similar boundary layer (discussed in $2.1) evolving from a stagnation 
point located at  X = X,, the conditions a t  the reference location marking the origin 
of the spot are given by 

leading to 

(2.11) 

(2.12) 

where v is the kinematic viscosity of the fluid, while the conditions determining the 
streamwise evolution of the spot depend on ,I3 and on (X-X,) which take into 
account the pressure gradient and the normalized shape of the velocity profile. 

Taking advantage of (2.12), the dimensionless length of the spot on the plane of 
symmetry may be expressed as a function of three dimensionless parameters and 
their products : 

(2.13) 

In the absence of a pressure gradient (i.e. for ,I3 = 0 ) ,  (2.12) still holds except that 
U, = const. = Urn and, consequently, (2.13) becomes 

(2.14) 

Thus for a prescribed (Rest),, the length of the spot depends only on the distance 
measured from its origin ; experiments indicate that this functional dependence is 
linear [i.e. L, a (X-X,)] provided X/X, is large. The dependence of dLx/dx on the 
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Reynolds number was given by Wygnanski, Zilberman & Haritonidis (1982) for 
600 < (Re,,), < 1520. For this limited range of Reynolds numbers, a linear fit 

L, = [(0.25+0.417 x lop3 (Re,.),] (X-X,) (2.15) 

Since the virtual origin for the accelerating flow is clearly determined, (2.12) can 
represents the data fairly well and is consistent with the dimensional analysis. 

be used to replace the S,* appearing on the left-hand side of (2.13) with 

and since the functional dependence of L, on (Re,,), is not defined, (2.13) may be 
rewritten as 

(2.16) 

which for the stagnation flow considered becomes independent of (Be,), and may 
empirically be expressed by 

x-xr -= Lx 0.134 X lop3 [TI, 
Xr -& 

(2.17) 

as shown in figure 9. 
The method used to detect the spanwise extent of the spot at Y x 0.613~ (i.e. its 

maximum width) also relies on intermittency, which is difficult to assess when the 
turbulent signature is weak, We therefore used an array of hot wires which were 
parallel to the surface and were displaced in the spanwise direction. The total width 
of the rake containing 12 hot-wire probes was 25 mm and the distance between two 
adjacent wires was approximately 2 mm. The probe was placed near the anticipated 
tip of the spot and the velocity recorded by each wire for each event was checked 
separately. The program singled out two adjacent channels, one of which sensed 
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a turbulcnt signal while the other did not, and the interface was assumed to lie in 
between. The procedure was repeated for 150 realizations giving the most-probable 
location tip of the spot at the given X-station. The process was repeated at six 
streamwise locations for the three characteristic velocities considered and the result 
is presented in figure 10 in the dimensionless form discussed above. 

The maximum width of the spot may be approximated by 

(2.18) 

for (X-Xr)/(6,*) > 250, implying that a representative lateral rate of spread of the 
spot relative to the plane of symmetry is less than 6’ rather than the 11’ reported in 
the literature for the flat plate in the absence of a pressure gradient. 

The spot spreads in the streamwise and spanwise directions by destabilizing the 
laminar boundary layer in its vicinity, thus the width and the length of the spot are 
dependent on the character of the surrounding boundary layer but not its height. 
The spot is a very flat structure whose typical height is one to two orders of 
magnitude smaller than its width. Thus, the maximum height of the spot, which is 
approximately located in the centre of its (X,Z)-projection, and is thus totally 
surrounded by turbulence, cannot be affected by the state of the laminar boundary 
layer. Since the dimensionless parameters governing the maximum height of the spot 
are different, the dependence of h,,, on (X-X,) is considered in a dimensional form 
(figure 11). 

The maximum height of the spot was determined from local velocity perturbation 
contours of - 2 YO rather than from an ‘on-off’ signal because this procedure was 
deemed the easiest and most accurate in this case. These contours represent closed 
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loops in which the upper tip of the spot is clearly defined. Although this procedure 
does not detect turbulence directly, it detects the momentum loss produced by the 
additional Reynolds stresses and skin friction associated with the passages of 
turbulence. It is therefore a legitimate, though arbitrary, criterion for the detection 
of turbulence. This technique was pioneered by Coles & Barker (1975) and was later 
used by Wygnanski et al. (1982) to determine the height of the spot, for which it is 
most suitable. Although the height of the spot increases with X, it is independent of 
the reference velocity and the surrounding laminar boundary layer. On the other 
hand, the maximum height of the spot is affected by the size and shape of the 
surrounding turbulent eddies (i.e. the structure of the surrounding turbulent 
boundary layer, Schubauer & Klebanoff 1956) and is therefore dependent on the 
imposed pressure gradient. 

In the present investigation (see figure l l ) ,  h,,, - (X-X,)o.6 for all three 
characteristic velocities considered, and compares with h,,, - (X  -X,)O.' determined 
for /3 = 0 by Wygnanski et al. (1982). Thus the growth of the spot in the y-direction 
is also reduced by the favourable pressure gradient. 

The celerities of the leading and trailing interfaces should also scale with the 
dimensionless variables outlined in (2.16) such that 

.% =f[/3; (Rea*),;- 
v, x-xrl 8: , 

(2.19) 

where Qnt refers to a celerity of an interface. 
The results are plotted in figure 12 for the three reference velocities considered, and 

once again they seem to be insensitive to (ReB.),. Although the range of (Re,,), 
considered here was rather small, a comparable variation in (Re,), suaced to have 
a significant effect on UTE and L, in the absence of a pressure gradient (see 
Wygnanski et al. 1982, figure 14). 
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FIQURE 13. The temporal evolution of the spot in the ( t ,  2)-plane compared with a representative 

shape of the spot in the absence of a pressure gradient. 

The temporal evolution of the spot in the (2,t)-plane is shown in figure 13 for 
Y/S* = 0.6 and six streamwise locations. The leading and trailing interfaces 
determined by intermittency are marked by the triangular symbols. Data points 
near the tip of the spot were deleted because of the sensitivity of the intermittency 
signal to threshold level, which might have resulted in an erroneous interpretation. 
The thick solid lines represent contours of 2 % velocity perturbation which coincide 
with the leading interface of the spot, while the area between the trailing interface 
and the 2% perturbation contour in the rear of the spot may represent the 
boundaries of the calmed region. 

The difference in shape of the trailing interface between the spot evolving in the 
Blasius boundary layer and the spot mapped in the present experiment is obvious. 
For /3= 1 the trailing interface is straight and perpendicular to the plane of 
symmetry while for p = 0 the rear turbulent interface of the spot is concave (see 
insert in figure 13, and also Cantwell et al. 1978). The concavity of the turbulent 
interface is attributed to the breakdown of the wave packet trailing the spot. In the 
absence of a pressure gradient such a breakdown occurred beyond the critical 
Reynolds number. This phenomenon was discussed in detail by Glezer et al. (1989, 
e.g. figure 9) for laminar boundary layers evolving at /3 = 0 and /3 = 0.2. The laminar 
boundary layer discussed here (i.e. p = l) ,  is very stable to small disturbances and 
therefore the critical Re was never exceeded. Consequently, waves were not 
anticipated to exist near the tip of the spot over the range of Reynolds numbers 
considered and the spot was deprived of one of the mechanisms contributing to its 
growth. The spot may still grow by destabilizing the flow in its vicinity through a 
stroug nonlinear process which probably exists even at  subcritical Re. 

The normalized shape of the spot is approximately self-similar in both ( Y ,  t ) -  and 
(2,t)-planes, &s might be deduced from figure 14, where the boundaries of the spot 
measured between 100 < (X-X,) c 175 collapsed onto a single curve. 
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FIQURE 14. Normalized views of the spot : (a)  plane view, and ( b )  elevation view. 
100 < (X-X,) < 175 cm. 

2.4. The $ow jield within the turbulent spot and its vicinity 
Some important boundary-layer parameters associated with the passage of the spot 
far downstream from its origin are plotted in figure 15. These include the 
displacement thickness 6*, the momentum thickness 0, and the shape factor H = 
S*/0. The variations of these parameters during the paasage of the spot in the 
absence of pressure gradient are known (see Wygnanski et al. 1976, p. 808) and can 
therefore be used to assess the effects of pressure gradient. Both integral lengthscales 
increase rapidly after the passage of the leading interface and attain their respective 
maxima at  the same time at which the ensemble-averaged boundary of the spot 
attains its maximum height. They then decrease gradually towards the trailing edge, 
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FIQURE 15. The variation of a*, B, and H during the passage of the spot a t  2 = 0. 

dipping below their asymptotic values in the undisturbed laminar layer. A 
qualitatively similar yet quantitatively different behaviour was observed in the 
absence of pressure gradient. 

The thinning of the laminar boundary layer following the spot results in a velocity 
profile which is more convex and more stable than the ambient profile and was 
therefore referred to by Schubauer & Klebanoff (1956) as the ‘calmed region’. For 
example, the ratio between the displacement thickness in the calmed region to the 
displacement thickness computed ahead (downstream) of the leading interface is : 
6,*,/S:, x 0.8 (where the subscript CR refers to the ‘calmed region ’). In the absence 
of a pressure gradient, this ratio was as low as 0.57. The momentum thickness 
behaves in a similar way, but the ratio OCR/eLE x 0.92, compared with the ratio of 
0.5 in the absence of a pressure gradient. The reduction in the integral scales in both 
cases (i.e. for B = 1 and for ,8 = 0) stems from the change in the shape of the mean 
velocity profile behind the spot but the overall effect is more significant when the 
ambient flow is less stable, i.e. it is more notable in the Blasius boundary layer than 
in the stagnation flow. This may lead one to speculate that the ‘calmed region’ is 
generated by the distortion of the local mean flow by some mysterious nonlinear 
process. 

One may also examine the sensitivity of the relative duration of the ‘calmed 
region ’ to the pressure gradient. This duration may be arbitrarily defined as the time 
interval between the trailing interface of the spot and the time at  which 6* returned 
to within 95% of its undisturbed value or, alternatively, one may replace 6* by the 
shape factor H or use the contour representing a 2% deviation of the ensemble- 
averaged velocity perturbation as a proper criterion to determine the bounds of the 
calmed region. Whichever criterion was used, the ratio between the duration of the 
‘calmed region’ and the duration of the turbulent spot, in the present experiment, 
was approximated unity, i.e. ATCR/AGP x 1.  The relative duration of the ‘calmed 
region ’ in the absence of a pressure gradient is approximately 2. Thus, the degree of 
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instability of the boundary layer surrounding the spot may be linked with the length 
of the calmed region. 

Glezer et al. (1989, figure 14) observed that the Tollmien-Schlichting waves 
following the spot in the absence of a pressure gradient change their spanwise 
inclination to the flow in the vicinity of the calmed region before ‘disappearing ’ in 
it. The disappearance of the waves may be more apparent than real because aliasing 
effects contribute to the apparent elongation of the waves whenever the wave crests 
are oblique to the plane of measurement. The streamwise streaks observed visually 
in the calmed region (Gad-el-Hak et al. 1981 ; Cantwell et al. 1978) might very well 
be associated with those waves. Since the visual observations are based on single 
events they may show the effect more clearly than a somewhat smeared ensemble 
average of one-dimensional velocity data. One may suggest that in the absence of 
pressure gradient, the calmed region owes its existence to a nonlinear distortion of 
the velocity profile by the finite-amplitude waves which turned in the direction of 
streaming in the wake of the spot. Since the present pressure gradient did not 
eliminate entirely the calmed region, but only curtailed its dimensions, an additional 
mechanism might be responsible for the generation of the calmed region. For 
example it is quite possible that Tollmien-Schlichting waves are embedded in the 
turbulent region of the spot and they contribute through some nonlinear process to 
the size of the calmed region. 

The shape factor H remains almost constant within the core of the turbulent 
region, having a value of 1.5 which is typical for a turbulent boundary layer a t  
comparable Reynolds numbers and mildly favourable pressure gradients. The value 
of H in the unperturbed laminar boundary layer was 2.2, which approximates the 
theoretical value for a stagnation-point flow. Prior to the arrival of the spot, the 
value of H decreases from 2.2 to 1.9, indicating that some fluctuations are present in 
the laminar flow upstream of the spot. This is consistent with linear stability 
calculations, which identified an unstable region in front of the leading interface of 
the spot (Glezer et al. 1989, figure 17). 

A logarithmic velocity distribution (i.e. U+ = A log(y+) +B) represents the mean 
flow in the central core of the spot for 10 < y+ < 200, where U+ was determined from 
the slope of the mean velocity profile near the surface. Both U+ and y+ have their 
customary meaning. The constants A and B varied between 5 and 7,  depending on 
the location of the velocity traverse within the spot, the streamwise distance of the 
traverse from the origin of the spot, and last but not least an experimental 
uncertainty in determining the distance between the surface and the hot-wire probe. 
The results are similar to those recorded in the absence of a pressure gradient (see 
Wygnanski et al. 1976, figure 20) where the logarithmic velocity distribution was 
observed between y+ x 20 and y+ x 1000. The extent of the logarithmic velocity 
distribution in the present experiment was thus significantly shorter than in the 
absence of a pressure gradient. The ‘outer law’ or the ‘law of the wake’ was not 
observed in either case. In the present experiment, the thickness of the boundary 
layer did not extent beyond y+ of 200 where U,/U+ x 20. 

The turbulent intensity of the streamwise velocity component is a convenient 
measure by which the transition process and the rate of destabilization of the laminar 
boundary layer may be gauged. Evaluating the turbulent intensity in a non- 
stationary flow of the type considered is not trivial ; therefore, a special scheme was 
devised by Glezer et al. (1989) in which the data recorded for each realization were 
processed twice. In  the first run, a running average was generated using a variable 
time window, while in the second run, the turbulent intensity was calculated by 
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FIGITRE 16. Contours of turbulent intensities within the spot at X - X ,  = 65, 80, and 95 cm and 
Y I P  = 0.6. 

subtracting the square of the running average from the square of the recorded time 
series. The result was dubbed as the ‘true r.m.s. ’. Since detailed information about 
the scheme and its validation is provided by Glezer et al. (1989), it will simply be used 
in the present context without further elaboration. 

Contours of the dimensionless turbulent intensity ( ( d Z ) i / U , )  plotted at  intervals 
of 1 YO in the (2, t)-plane are shown in figure 16 a t  three different X locations for 
U,,, = 7.5 m/s. The effect of the pressure gradient may be easily assessed by 
comparing this figure with figure 6 of Glezer et al. (1989). The high turbulent 
intensity of 9% observed near the tip and the leading interface of the spot at all X -  
locations considered was linked, as before, with the destabilization of the laminar 
boundary layer. This level of turbulent intensity was observed by Glezer et al. (1989) 
only a t  the station nearest to the origin of the spot (i.e. at X ,  < 620 mm). Farther 
downstream a second turbulent region was detected and the maximum intensity 
within the original spot decreased to 7 % and occurred closer to the trailing interface. 
When the conditions for breakdown of the Tollmien-Schlichting waves trailing the 
spot do not exist (owing to a low Reynolds number or other stabilizing factors such 
as a favourable pressure gradient), the secondary source of turbulence generation is 
cut off and the high-turbulent-intensity region shifted closer to the leading edge of 
the spot. There were no waves that trailed the spot in the present experiment. 

The gradual decrease in the turbulent intensity near the boundaries of the spot 
stems from averaging the data over spots of different dimensions and shapes; it does 
not represent a true gradient in the turbulent intensity within the spot. One may also 



The evolution of the turbulent spot in a laminar boundary layer 21 

notice that, in spite of the fact that the turbulent spot evolving in an accelerating 
flow field is much smaller than its counterpart evolving in the absence of a pressure 
gradient, the measured turbulent intensities in both are approximately equal 
provided the Reynolds numbers appropriate to the surrounding laminar boundary 
layer are subcritical. 

3. Summary and conclusions 
A turbulent spot evolving in a self-similar laminar boundary layer, described by 

a Falkner-Skan parameter /3 = 1, was investigated experimentally. The overall 
growth of such a spot is significantly inhibited by the favourable pressure gradient, 
and its spreading rate in both the streamwise and spanwise directions is reduced by 
more than 50 YO relative to the corresponding spreading rate of a spot in the absence 
of a pressure gradient a t  comparable Reynolds numbers. The favourable pressure 
gradient used in this experiment did not suffice to squelch the contamination of the 
laminar flow by turbulence. It helped, however, to reduce the rate of such 
contamination by eliminating the amplification and breakdown of small-amplitude 
disturbances because the local Reynolds number was everywhere subcritical. 

The propagation rates of the leading and trailing turbulent interfaces no longer 
scale with the local free-stream velocity as they do in the Blasius boundary layer. 
While the free-stream velocity increases linearly in the direction of streaming, the 
propagation of the turbulent interfaces increase as the Xi. The ratio between the 
propagation velocity of the leading interface to the propagation velocity of the 
trailing interface increased from approximately 1.2 near the spark location to 1.55 a t  
the last X-station a t  which measurements were taken. The corresponding ratio for 
the spot evolving in the absence of pressure gradient is approximately 1.8 for the 
same range of Reynolds numbers. 

The trailing interface is nearly straight and perpendicular to the direction of 
streaming while it often has an arrowhead shape in the absence of a pressure 
gradient. Since no waves were observed to trail the spot, the generation of secondary 
turbulent patches resulting from the breakdown of waves was not expected in the 
range of Reynolds numbers considered (i.e. at Re,, % los). Above the critical Re for 
this flow (i.e. at Re,, > 1.2 x 104) waves might be generated, changing both the rate 
of spread of the spot and the shape of its trailing edge. Some linearly unstable regions 
in the immediate vicinity of the spot, particularly in front of its leading interface 
might exist even in this pressure gradient. The velocity profile within the spot, as well 
as some of its integral parameters (such as the displacement thickness, the 
momentum thickness, and the shape factor), resemble the characteristic parameters 
of a fully developed turbulent boundary layer. Finally, the turbulent intensity inside 
the spot is less uniformly distributed but it is somewhat higher than in the 
corresponding spot evolving in a Blasius boundary layer. 
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